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A stat ist ical  method called the Likelihood Rat io  Method (LRM) has been developed which permits  
determining lattice parameters  accurately within the precision of the Bragg angle measurements  if 
these measurements  have been individual ly corrected for systematic  errors. The LRM incorporates 
a test  (the LRT) which indicates when the systematic  errors have been removed from the X- ray  
data  in a valid stat ist ical  manner .  The LRM is applicable to all diffractometer  or film methods 
which can be corrected for systematic  errors. 

An applicat ion of the LRM is given involving analysis of the lattice parameter  da ta  on zone 
refined silicon, published by ~V. L. Bond. Of the three systematic  error corrections used by Bond, 
only the applicat ion of the refraction correction satisfied the LRT. Using this correction, the 
max imum likelihood est imate of a 0 under  the hypothesis  of 'no remaining systematic  errors,' 
designated a0, was calculated to be 5.430736 _+ 0.000014 A (95°,o confidence limits) at  25 °C. and based 
on a Cu K~x 1 wavelength of 1-540510 ,~. The value a 0 for this sample of silicon is accurate within 
the s ta ted precision (one par t  in 390,000). This implies that ,  if another  individual measured the 
lattice parameter  of this sample with  the s ta ted prccision using the same wavelength value and a 
diffraction technique which permits  correcting the individual measurements  for systematic  error in a 
valid stat ist ical  manner,  his average value would agree with the above value within one par t  in 
390,000 at  the 95 °~ confidence level. /O 

1. I n t r o d u c t i o n  

I n  recen t  years ,  l a t t i ce  p a r a m e t e r  d a t a  us ing X - r a y  
t echn iques  have  been repor t ed  w i th  precis ions ex- 
ceeding one p a r t  in  50,000 (S t r auman i s  & Ievins ,  1940 ; 
S t r a u m a n i s ,  1960; Vogel & K e m p t e r ,  1959; Mueller,  
H e a t o n  & Miller, 1960; Mueller  & H e a t o n ,  1961; 
Bond,  1960). I n  v iew of the  h igh  precis ions c la imed 
for a wide v a r i e t y  of t echniques ,  i t  is d i sconcer t ing  
to observe  the  poor  ag reemen t  o b t a i n e d  b y  var ious  
observers  on  samples  d i s t r i b u t e d  in connec t ion  w i th  
the  I n t e r n a t i o n a l  U n i o n  of C r y s t a l l o g r a p h y  (IUCr) 
P ro jec t  on L a t t i c e  P a r a m e t e r s  (Parr ish ,  1960). I n  
several  respec ts  th i s  p ro jec t  was conducive  to ob- 
t a i n i n g  good a g r e e m e n t ;  i.e., t he  same sample  was 
s u b s a m p l e d  a n d  d i s t r i b u t e d  to p a r t i c i p a t i n g  labora-  
tories,  a n d  i t  was agreed  to use the  same X - r a y  wave-  
l eng th  values ,  r e f rac t ion  correct ions,  expans ion  co- 
eff icients ,  etc. I n  spi te  of these  favorab le  circum- 
s tances ,  the  a g r e e m e n t  t u r n e d  ou t  to  be r e l a t i ve ly  
poor  compared  to  the  r epor t ed  precisions.  This  c lear ly  
ind ica tes  t h a t  s y s t e m a t i c  errors in  the  m e a s u r e m e n t s  
of the  var ious  labora tor ies  have  no t  been e l im ina t ed  
f rom the  la t t i ce  p a r a m e t e r  calcula t ions .  Thus ,  while  

* T h i s  w o r k  w a s  p e r f o r m e d  u n d e r  C o n t r a c t  AT- (33-2 ) -1  
w i t h  t i le  U.S .  A t o m i c  E n e r g y  C o m m i s s i o n .  

t he  precis ion m a y  have  been good, the  accu racy  was 
r e l a t ive ly  poor. 

A ma jo r  l im i t a t i on  of a n y  la t t i ce  p a r a m e t e r  tech- 
n ique  descr ibed in the  l i t e r a tu re  is the  lack of a 
su i tab le  s t a t i s t i ca l  y a r d s t i c k  for assessing the  ac- 
cu racy  of the  ca lcu la ted  la t t i ce  p a r a m e t e r  values.  
For  cxample ,  a l eas t - squares  e x t r a p o l a t i o n  wi th  or 
w i t h o u t  weight ing ,  in  spi te  of i ts  s t a t i s t i ca l  implica-  
t ions,  does no t  p rovide  d a t a  for assessing the  accu racy  
of the  la t t ice  p a r a m e t e r  t hus  de te rmined .  This  makes  
i t  d i f f icul t  or impossible  to de t e rmine  whe the r  or no t  
the  s y s t e m a t i c  errors have  been t r u l y  r e m o v e d  wi th in  
the  precis ion of measu remen t .~  

I t  is the  purpose  of th is  pape r  to describe a s ta t i s t i ca l  
me thod ,  cal led the  L ike l ihood  R a t i o  Method,  which  
ind ica tes  w h e n  a n  accura te  va lue  of the  l a t t i ce  
p a r a m e t e r  has  been a t t a i n e d  a f te r  the  s y s t e m a t i c  
errors have  been r e m o v e d  w i th in  the  precis ion of 
m e a s u r e m e n t ;  to  give a n  example  of one case in  

t I t  is assumed that only precisions of at least _ 0.005% 
or one part in 20,000 are of interest here. Wavelength accuracy 
is not included in this discussion. As long as the same wave- 
length value (peak, center of gravity, or other suitable feature 
of the characteristic wavelength distribution) is used by all 
concerned, the wavelength and lattice parameter accuracy 
problems can be handled separately. 
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which this has been accomplished;  and to discuss the 
significance of these findings. This method was first 
presented in pre l iminary  form by ti t le (Beu, Musil & 
Whi tney,  1959) at the IUCr Latt ice Parameter  Con- 
ference held in Stockholm, Sweden, on June  l0  and I l,  
1959. 

This paper  represents par t  of a project to evaluate  
the m a x i m u m  practical  precision and accuracy attain- 
able in latt ice parameter  determinat ions  using a 
cylindrical  fi lm powder diffraction method. This 
project does not involve the asymmetr ica l  diffractom- 
eter approach (Pike & Wilson, 1959; Ladell,  Parr ish 
& Taylor,  1959), nor does it involve extrapolat ion 
methods {Bradley & Jay ,  1932; Cohen, 1935) with 
their  inherent  l imitations.  I t  does not deal with the 
wavelength accuracy problem which, except for the 
centroid method (Pike & Wilson, 1959), can be 
handled  separately from the parameter  problem. 

The approach used is a modification of the Strauma- 
nis method (Straumanis  & Ievins, 1940) and involves 
measuring diffraction line positions on fi lm to a 
precision of about  _+0.001 ° ~, correcting each meas- 
urement  for geometrical  sys temat ic  errors, and cal- 
culating the latt ice parameter  from the corrected 
da ta  by  means of a rigorous statist ical  method called 
the Likelihood Rat io  Method ( L R M ) .  The L R M  pro- 
vides an accurate es t imate  of the latt ice parameter  
~0, its variance s~o, and  a test  (the Likelihood Rat io  
Test) which indicates whether or not the systemat ic  
errors have been e l iminated  from the measurements  
in a val id stat ist ical  manner .  Examples  of the ap- 
pl icat ion of the L R M  are given. 

2.  D e f i n i t i o n s  a n d  a s s u m p t i o n s  

A. Defini t ions 
e~ is the unknown systematic  error at 0i in de- 

grees 0. 
0~ is the true but  unknown value of the Bragg 

angle 0, in degrees 0 [approximate values of 0i 
are also used in determining W(a0), sec Section 
3, B]. 

yJ;~ is the ,xth measurement  of the i th  diffraction 
angle, corrected for known systemat ic  errors, 
in degrees 0. 

yJ~ is the average of n~ lneasurements  of ~i,. 

o~ 

a~ is the variance of the YJi~ (see Assumptions).  
s~. is the exper imenta l ly  determined variance of 

2 v2i ~. s i = (1/ni) __Y (Yoi~,-- v2i) 2. 
o; 

ki =n2l / (he+k 'e+le) /2  (for cubic materials) 
where n, 2, h, k, and 1 have their  usual crystallo- 
graphic meanings.  

a0 is the true latt ice parameter  of a cubic mater ia l  
in /~ [approximate  values of a0 are also used 
in determining W(a0)]. 

H is the hypothesis  of 'no remaining systematic  
errors' ;  ei=O for all i. 

W(ao) is a funct ion used to determine ao and to test H. 
IV~ is the m i n i m u m  wdue of W(ao). 
u,~ is the critical value of the test statistic, W,n. 
e is the significance level of the test. 

do, d,', ~ ,  0~ are m a x i m u m  likelihood est imates of these 
parameters  under the Assumptions (see below). 
Single carets are used to indicate these esti- 
mates. Otherwise these parameters  are defined 
exact ly  as given above. 

~o, (r~, 0~ are m a x i m u m  likelihood est imates of these 
parameters  under  the hypothesis  H. Double 
carets are used to indicate these est imates 
under H. 

B. Assumpt ions  
1. yJi~ is a normal  random variable.  
2. The Y~i.~ are independent  for: 

i = 1 , . . . ,  m (the number  of diffraction angles 
mcasured). 
:.x --1, . . . ,  ni (the number  of measurements  at the 
i th diffraction angle). 
~ 'n~ = N (the total  number  of measurements).  
i 

3. The mean or expected value of ~#i~ is given by:  

E ( *fli~,) = Oi q-ei 

where Oi satisfies the Bragg equat ion:  aosinO~=k~. 
4. X~'e~=O. 

i 
5. The variance of the ~ i ,  denoted by a~,i~, depends 

only on the angle, i.e.: 
2 o 

O'~i ~ -~ (7~. 

3. T h e  l i k e l i h o o d  r a t i o  m e t h o d  ( L R M )  

A. Philosophy 
This statist ical  approach to the accurate determina- 

t ion of latt ice parameters  is called the Likelihood 
Rat io  Method (abbreviated L R M )  since the crux of 
the method depends on the applicat ion of a stat ist ical  
test called the Likelihood Rat io  Test ( L R T )  (Mood, 
1950). The L R M  is based on the principle tha t  a lattice 
parameter  for a given crystall ine sample is the same 
regardless of the (hkl) reflection from which it  is 
calculated. By  measuring the angular  positions of at  
least three reflections and correcting the measured 
Bragg angles for all known systematic  errors,* the 
latt ice parameter  values calculated from the corrected 
da ta  should agree among themselves. If  they  do, this 
indicates tha t  the systematic  errors have indeed been 
removed from the corrected data  wi th in  the precision 
of measurement .  The L R T  indicates in a val id  statis- 

* It is not the purpose of this report to describe how the 
systematic errors may be removed from the individual meas- 
urements. This has already been indicated for diffraction 
peak measurements using counter (Bond, 1960) and film 
(Beu, Musil & Whitney, 1959) techniques and for centroid 
measurements (Pike & Wilson, 1959). 
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t ica l  m a n n e r  w h e t h e r  or no t  th i s  has  been accom- 
pl ished.  

The  L R M  uti l izes corrected d i f f rac t ion  d a t a  of h igh  
precis ion a n d  provides  an  accura te  e s t ima te  of the  
la t t ice  p a r a m e t e r  a n d  i ts  s t a n d a r d  dev ia t i on  a f te r  i t  
has  been shown  t h a t  the  s y s t e m a t i c  errors have  been 
r e m o v e d  f rom the  da ta ,  according  to the  L R T .  The 
L R M  is deve loped  here  for the  cubic case which  has  
on ly  onc la t t i ce  pa r ame te r ,  a0. :It can, however ,  be 
e x t e n d e d  to cases invo lv ing  add i t i ona l  pa ramete r s .  

va lue  of a0 cor responding  to ~ e ~  = 0  (see Figs.  1 and  3). 
i 

d~ m a y  t h e n  be ca lcu la ted  using the  equat ions"  

B. L R M  procedure 

The Bragg  angle  for each (hkl) ref lec t ion  of in t e res t  
2 is measu red  ni t imes,  a n d  y~i a n d  s i are ca lcu la ted  

The  m a x i I n u m  l ike l ihood e s t ima tes  (Mood, 1950a) 
of the  p a r a m e t e r s  unde r  the  a s sumpt ions ,  do, ai, g~, 

a n d  0~ are t h e n  ca lcu la ted  us ing the  fol lowing rela- 
× 

t i onsh ips  [a de r iva t i on  of the  equa t ions  used in  the  
L R M  is g iven  in A p p e n d i x  I a n d  in  a comprehens ive  " 
r epor t  (Beu, Musil  & W h i t n e y ,  1961)]" 

A 

do s i n O i =  ki 
" 2  2 
(Yi "~" 8 i  

~ 'g i  = O. 
i 

I n  pract ice ,  do, is d e t e r m i n e d  b y  e s t i m a t i n g  ao, cal- 
cu la t ing  the  Oi, s u m m i n g  the  e~ values,  a n d  p lo t t i ng  
~'e~ versus  a0 for several  a0 es t imates .*  do is t h a t  
i _-- 

* A suggested method for the first estitnato is to calculate 
a 0 from the corrected values of ~0~ for each diffraction line and 
to use the average of these values of a 0. ]?he wtlues of Oi 
are then calculated from this average %. 

ao, ~. 

Fig. 1. .~ei versus a o Ior Bond's data on zone refined silicon. 
i 

16 

12 

Corrected for 
L.P. factor 

~Uncorrec~ed 

~ o r r e c t e d  for 

Critical value w0. 
/ ( 0 .05  significance level) 

5. 430600 5.430640 5.430680 

Corrected for 
fraction 

------'All correct ions  
applied 

1 
5.430720 5.430760 5.430800 

ao,~ 

Fig. 2. W(ao) versus a o for Bond's data on zone refined silicon. 
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do sin0~ = ki and di = ~ v i - 0 ~ .  

The g~ need be determined only if subsequent calcula- 
tions indicate the presence of systematic errors beyond 
the precision of measurement. 

The hypothesis is then made tha t  there are 'no 
remaining systematic errors' in the corrected ~Pi~ 
measurements : 

H :  e l = e 2 = e 8  ~- . . . = e m - = - O  . 

The maximum likelihood estimates under the hypo- 
^ A o  

thesis, ~0 and a;, are determined as follows" 
A function W(a0) is given by the equation: 

[ W(ao) = '~--n~i In 1 + ~-~ 3 

where 0~ is defined by a0 sin Oi=ki .  

2 / 
1 

0 

x i \  
~ = a o 6 9 

- 1  

3/ 
- 4  , 

/ 

/ 
/ 

- 5  

5 . 4 3 0 7 3 6 2 0  5 . 4 3 0 7 3 6 6 0  5 . 4 3 0 7 3 7 0 0  5 . 4 3 0 7 3 7 4 0  

a o ,  .-~. 

Fig.  3. ~ 'ei  ve r sus  a 0 for  B o n d ' s  d a t a  c o r r e c t e d  for  
i 

r e f r a c t i o n  o n l y  ( e x p a n d e d  scale). 

A graph of W(ao) versus ao in the vicinity of do is 
examined for a minimum value of W(ao). The value 
of a0 corresponding to this minimum is ao and the 
minimum value of W(ao) is designated IV(go) o r  Wm 

(see Figs. 2 and 4 for typical graphs). The maximum 

likelihood estimate 0, may then be determined from 
the equation: 

a o  s i n  0 i  = k i  . 

0.282 

0 . 2 7 S  

0 . 2 7 4  

0 . 2 7 0  

5 . 4 3 0 7 3 4 ~  

f 

i \  

= 5. 4 3 0 7 3 6 0 4  )i,. 

W m = 0 . 2 7 4 8  

I I 
5 . 4 3 0 7 3 5 6  5 . 4 3 0 7 3 6 4  

:t o ,  ~. 

Fig.  4. W(ao) ve r sus  a 0 for  B o n d ' s  d a t a  c o r r e c t e d  for  
r e f r ac t i on  on ly  ( e x p a n d e d  scale).  

5 . 4 3 0 7 3 7 2  

Using the values of 0i just determined, ~. is calculated 
from" 

a~ = s :  + (~v~ - -  0~) ~. 

An estimate of the standard deviation of a0, denoted 
by Sao, may then be calculated using the equation" 

s?, o = a~/~_ (n~/(ri) tan2 0~. 
i 

The values of gto and s,, 0 just calculated have signif- 
icance only after it has been shown statistically tha t  
a0 has no remaining systematic errors. This is accom- 
plished by using the likelihood ratio test ( L R T )  
(Mood, 1950a). W(a0) is derived using the likelihood 
ratio, and Wm, the minimum value of this function 
in the vicinity of ao, is used as the statistic to test H. 
As a consequence of a theorem relating to the likeli- 
hood ratio (Mood, 1950b), Wm can be shown to be 
distributed approximately like chi-square (Z 2) with 
( r a -1 )  degrees of freedom where m is the number 
of diffraction lines measured. To test H, Wm is com- 
pared to a critical value, w~, where w~ and s are 
defined as follows" 

. O O  

I Z 2 distribution,* ( m -  1) d . f .= s o 

* The  Z 2 d i s t r i b u t i o n  is g iven  b y  tile e q u a t i o n :  

F (u )  = [.~(n 2 ) / 2 e - . r , ' " / 2 n / 2 [ ( n _ 2 ) / 2 ] ! ] d , r  " 
o 
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is the significance level of the test  chosen by the 
invest igator  (a commonly used value for ¢ is 0.05). 
After having chosen ~ and having looked up w~ in 
the table, (Hodgman, 1959a), the comparison is made 
with Win. 

If Wm >_ W~, the hypothesis  is rejected and we m a y  
conclude with 10()(1-~) percent confidence tha t  
systemat ic  errors remain  in the corrected measure- 
ments  and calculations. In  this case it is necessary 
to re-evaluate and improve the techniques used for 
removing systemat ic  errors. If Wm< w~, the hypothesis  
is not  rejected;  it is accepted at  the e significance 
level tha t  there are 'no remaining systemat ic  errors' 
in the calculated values of c/0 and s,, o. 

the ~ - ~ e  doublet  for example,  does not have a 
significant effect on the accuracy of the calculated 
lattice parameter  value based on the self-consistency 
criterion. 

5. After correcting the ~v~ values for systematic  
errors, one at a time, the magni tude  of the d~ values 
may  be observed for ~'e~=O. If the di values have 

i 
not decreased signif icantly for a given systematic  
error correction, then the technique for making tha t  
correction is suspect and should be re-examined. 
Thus, the L R M  is useful in pinpoint ing the sources 
of systemat ic  error and in evaluat ing the techniques 
used in correcting for systematic  errors. These points 
will be i l lustrated in the next  section. 

C. Features of the L R M  

1. The most impor tan t  feature of the L R M  is tha t  
it provides a val id statist ical  criterion for determining 
the accuracy of a lattice parameter  calculation based 
on the prcmise of internal  self-consistency of the da ta ;  
i.e., a latt ice parameter  value for a given sample is 
the same within the precision of measurement  regard- 
less of which (hkl) reflection is used to calculate this 
parameter .  

2. All systematic  error factors which are related 
directly to 0 will be included in the L R M  evaluation 
of accuracy. Even those factors which require a con- 
s tant  correction in 0 for each diffraction angle will be 
included in this evaluation. The zero setting error is 
a factor of this type and is of special importance in 
diffractometer work. The major  factor which does not 
enter directly into the L R M  evaluation is the X-ray  
wavelength and, as has been pointed out in the In- 
troduction, wavelength accuracy can be handled sep- 
arately from 0 accuracy. 

3. A comparison of ~rm calculated after making  each 
systemat ic  error correction, with the critical value w~ 
obtained from the chi-square distr ibution,  will indicate 
if the correction is valid. If Wm remains about  the 
same or increases, then  the correction is either in- 
significant or improper.  The correction is useful only 
if Wm decreases. Final ly ,  after all corrections are made, 
if W,n is still greater than  w~, then  either one or more 
corrections are of the wrong magni tude  or there are 
addi t ional  unknown systemat ic  errors. Only if Wm < w~ 
can it be claimed tha t  all sys temat ic  errors have been 
removed within the precision of measurement  at  the 
chosen significance level. 

4. If  Wm <w~, this implies fur ther  tha t  dispersion 
and the a symmet ry  of the characterist ic wavelength 
dis t r ibut ion have a negligible effect at  the s signif- 
icance level on the calculated value of the latt ice 
parameter .  This does not, however, indicate whether  
the characterist ic (peak, center of gravity,  etc.) used 
to calculate the latt ice parameter  is an accurate value. 
I t  only indicates when W~ < w~, the wavelength distri- 
but ion and its resolution, or lack of resolution, into 

4. Application of the L R M  

A. Bond's data on zone refined silicon 

In  order to demonstra te  the uti l i ty of the L R M ,  
latt ice parameter  da ta  of very high precision and 
potent ia l ly  great accuracy were chosen. These data  
were obtained by Bond (1960) on a single crystal  of 
zone refined silicon using a special diffractometer  
which could be used to make measurements  sym- 
metr ical ly  about  2 0 = 0  ° and 180 °. 

Bond's  method of measuring diffraction angles 
(crystal position ra ther  than  counter angle) results 
in the el iminat ion of eccentricity,  absorption, asym- 
metrical  source profile, and zero errors from the raw 
data. The measured diffraction angles, however, still 
require correction, according to Bond, for axial  
divergence, Lorentz and polarization (LP) factor, 
and refraction. Table 1 in Bond's  paper  lists the 
measured diffraction angle values together with the 
separate corrections to these wdues. Bond measured 
the peak positions of the (11 l), {333), and (444) reflec- 
tions of silicon using the centerline method (Beu, 
1957).* 

A summary  of Bond's  data  together with L R M  
results on his da ta  are given in Table 1. An ab- 
breviated L R M  calculation using Bond's  data  cor- 
rected for refraction is given in Appendix II. To 
facil i tate interpreta t ion of Table l,  degrees 0 from 
Bond's  Table 1 were converted from rain. and sec. 
to decimals. An X-ray  wavelength for Cu K~x1= 
1.54051 A was used as recommended in the IUCr 
project (Parrish, 1960) instead of the Siegbahn wave- 
length of 1.540501 A (1"537395 kX.U.) used by Bond. 
Lat t ice parameter  and wavelength values were con- 
verted from kX. units to A using the kX.-to-/~ ratio 

* We have found the centcrline method to give the most 
reproducible measure of the peak position, especially for sharp 
peaks where small intensity variations near tile peak make 
it difficult to determine the true peak position precisely 
(to about 0.001 ° 0) by inspection, parabola fitting, or other 
methods. 
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E x p e r .  
n o .  

l 

T y p e  of 
c o r r e c t i o n  

N o n e  

LP 

Axial  
d ivergen( ' e  

R e f r a c t i o n  

Table 1. L R M  data calculated from Bond's data on zone refined silicon 
( 2 =  1.54051 A) 

] :Tneorreeted C o r r e c t i o n  Cor r ec t ed  
(hkl) y~i (°0) (°0) ~P~ (°0) ,~i (°0) IVm 

(l l 1) 1 4 - 2 2 2 6 3  . . . . .  + 0-00153 
(333) 47.47598 --  - -  + 0.00009 
(444) 7 9 . 3 1 2 1 3  . . . . .  0.00162 

16-(,)6 
( l l l )  S a m e  as ( l )  + 0 . 0 0 0 0 0  14.22263 + 0 . 0 0 1 5 2  
(333) S a m e  as (1) + 0.00000 47.47598 T 0.00006 
(444) S a m e  as (1) + 0 . 0 0 0 1 7  79.31230 - -0 .00160  

16.41 
( I l l )  S a m e  as ( l )  - -0 .00004  14-22259 T 0.00153 
(333) S a m e  as (1) - -0 .00020  47.47578 +0 -00001  
(444) S a m e  as ( l )  - 0 " 0 0 0 7 0  79.31143 - -0 .00158  

16.20 
( I l l )  S a m e  as (1) - -0 .00180  14.22083 - -0 .00007  
(333) S a m e  as ( l )  - 0 " 0 0 0 9 0  47.47508 - -0 .00001  
(444) S a m e  as (1) - -0 .00230  79.30983 + 0 . 0 0 0 0 1  

L P + a x i a l  (111) S a m e  as (1) - 0 . 0 0 1 8 4  14.22079 - -0 .00010  
d i v e r g e n c e  + (333) S a m e  as ( 1 ) -- 0"001 l0  47.47488 -- 0.00007 
r e f r a c t i o n  (444) S a m e  as (1) -- 0 .00283 79-30930 + 0.00016 

a o (A) 

5.430685 

5.430685 

5.430700 

S t andard 
deviation (A) 

0.275 5"430736 + 0"000007 
(~o) (Sao) 

0"65 5"430747 + 0.000007 

of 1.00202.* The uncorrected ~v~ values of Table 1 
correspond to the mean  0 values given by Bond. 
The axial  divergence and refraction corrections were 
converted from kX. units  to degrees 0. 

B. Analysis  of Bond's data 

We are now ready to observe the stat ist ical  signif- 
icance of the systemat ic  error removal  from these 
da ta  using Bond's  corrections. This is done by com- 
paring the value of Wm at each level of removal with 
the critical w~lue of the chi-square distr ibution,  w0.0~. 
The critical value of w0.05 is 5.99 as can be determined 
by inspecting a chi-square dis t r ibut ion table (Hodg- 
man, 1959a) at the 0.05 significance level and two 
degrees of freedom (for three diffraction lines). 

The hypothesis  of 'no remaining systemat ic  errors' 
is rejected if lVm > 5.99 and is not rejected if 
W~ < 5.99. On this basis we can see tha t  the hypothesis  
would be rejected (Win > 16) for exper iments  No. 1, 2, 
and 3 listed in Table 1. I t  would be expected tha t  the 
hypothesis  would be rejected for No. 1 since Wm in 
this case was determined for the uncorrected data.  
I t  is perhaps a l i t t le surprising tha t  the Wm values 
for the L P  (No. 2) and axial  divergence (No. 3) 
corrections do not change signif icantly compared to 
W~ for the uncorrected data.  This implies tha t  the 
L P  and axial  divergence corrections do not reduce the 
sys temat ic  errors significantly.  

Next,  we observe tha t  Wm=0.275 when using the 
refraction correction. Since this is less t han  5.99, this 
implies tha t  the refraction correction alone has re- 

........ 
* Since  the  w a v e l e n g t h  a c c u r a c y  p r o b l e m  is be ing  h a n d l e d  

s e p a r a t e l y  f r o m  the  LR3I ,  t h e  f a c t  t h a t  ~. (1.54051 A) a n d  t he  
c o n v e r s i o n  f a c t o r  (1.00202) a re  g iven  o n l y  to  f ive  dec ima l s  
is no  l i m i t a t i o n  on  r e p o r t i n g  l a t t i c e  p a r a m e t e r  a c c u r a c y  a n d  
p rec i s ion  to  six dec ima l s ,  as will be  done  in t he  n e x t  sec t ion .  

moved the systemat ic  errors from the da ta  wi thin  
the precision of measurement  and a0, the m a x i m u m  
likelihood est imate of ao under the hypothesis  H, is 
tha t  value of ~t0 corresponding to Wm=0"275 (Fig. 2). 
The value of ~t0 is 5.430736 • (at 25 °C.) and this is 
an accurate value of a0 for this sample of silicon within 
the preci~on of measurement .  

After ~0 was determined,  the est imate of the 
s tandard  deviat ion of ao, Sa o, was calculated to be 
0.000007 /~. I t  is interest ing to note tha t  s% is com- 
parable  to the precision with which high angle dif- 
fraction lines can be measured even though both high 
and low angle lines are used in the L R M  calculation. 

The fact tha t  the refraction correction alone results 
in a w~lue of ao accurate within the precision of meas- 
urement  m a y  be fur ther  demonst ra ted  by examining 
the ~ ' e i  versus ao and W(a0) versus a0 curves in more 

i 
detail.  I t  will be recalled tha t  do, the est imate  under  
the assumptions,  is determined when ~ ' e i = 0  and tha t  

i 
a0, the est imate  under the hypothesis,  is determined 
at the m i n i m u m  value of W(ao). If do differs f rom/lo  
by less t han  the precision of measurement ,  then  this 
provides further  verification tha t  the hypothesis  of 
'no remaining systematic  errors' has been satisfied. 

Fig. 3 is a greatly enlarged plot of ~ e i  versus a0 
i 

in the vicini ty  of _~et=0.  The value of do, by direct 

interpolation,* is 5-43073679 A. Fig. 4 is a greatly 
enlarged plot of W(ao) versus a0 in the region of 
m i n i m u m  W(ao). Using the centerline method (Beu, 
1957), Wm is 0.2748 and ~0 corresponding to this 
min imum* is 5.43073604 A. The difference between 

. . . . . . . . . .  

* A p p e n d i x  I I  g ives  t he  ca l cu l a t i ons  for  t hese  va lue s  of 
d o a n d  ~0, as well  as fo r  W(ao) a n d  Sao. 
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do and a0 is 0.00000075 ~. This difference is about 
one-tenth as large as s,,,, thereby confirming the fact 
that  the value of ao is indeed accurate within the 
precision of measurement. 

Values of the silicon lattice parameters and their 
deviations calculated by Bond and t)~ us using the 
L R M  are summarized as follows" ~0=5"430736± 
0"000014 ~ at 25 °C. This is an accurate estimate of 
a0 and its deviation at the commonly used 95 percent 
confidence level. This value of ~0 is based on the X-ray 
wavelength of 1.54051 ~ for Cu K~I, as recommended 
for the IUCr project~ (Parrish, 1960). The 95 percent 
confidence limits of ±0.000014 z~ are based on four 
sets of measurements of the ( l l l ) ,  (333), and (444) 
reflections (a total of twelve measurements made by 
Bond). I t  is interesting to note tha t  Bond's method of 
calculating an a0 value for each of three (hkl) reflcc- 
tions results in a poorer precision (one part  in 290,000), 
calculated at the 95 percent confidence limits, than 
when using the L R M  on exactly the same data (one 
part  in 390,000). The value of ao=5"430747 ~ using 
the L R M  with all of Bond's corrections differs from 
ao by 0-000011 A and Bond's weighted value of 
a0=5.430752 ~ (converted from kX'. units) differs by 
0"000016 /~. Neither of these values is significantly 
different from ~0 at  the 0.05 significance level as 
determined by t and F tests (Hodgman, 1959b). 
Hence all of these lattice parameter  values are ac- 
curate within precision limits based on s~,. Never- 
theless, the value of ~0 is to be preferred since it is 
the maximum likelihood estimate of a0 under the 
hypothesis. 

A P P E N D I X  I 

S ta t i s t i ca l  ana ly s i s  and der ivat ion  of equat ions  
used  in the L R M  

A. Analysis 

Using the assumptions stated in Section 2, B of 
this paper, the lattice parameter,  its accuracy and 
precision are estimated in terms of a hypothesis of 
'no remaining systematic errors' in the corrected 
Bragg angle measurements, ~f;.,. The hypothesis is 
tested using the likelihood ratio ).LR. The likelihood 
ratio (Mood, 1950a) as applied to this problem is de- 
fined in terms of its logarithm: 

In ).LIc=.L(~o, ~i)--L(do, ai, di) 

where * ~" L(ao, cry) is the logarithm of the maximum 
value of the sample density function (F,:~ are the 
sample values) consistent with the hypothesis and 
assumptions, and L(do, ~ ,  &) is the logarithm of the 
maximum value of the sample density function con- 
sistent with the assumptions. 

Large values of ).LR (or its logarithm) are regarded 
as evidence tha t  the hypothesis is true while small 

I f  t he  w a v e l e n g t h  of 1.540501 ~ (1"537395 k X U . )  is u sed  
(Bond ,  1960) t h e n  ~ o = 5 . 4 3 0 7 0 4  .~. 

F I L M  I ' ( ) ~ V D E R  M E T H O D S .  I 

values indicate the hypothesis to be false, i.e., that  
systematic errors still remain in the data. The distine- 
tion between what is taken to be true or false is 
statistically determined at the s significance level by 
evaluating Win, a function of ),Ln, which is distributed 
approximately like chi-square (Ze). By comparing Wm 
with a critical value ,w~ obtained from a table of chi- 
square values, the hypothesis is rejected if Wm> w~. 
On the other hand the hypothesis is not rejected, i.e., 
it is accepted at the s significance level, if W~ <w~. 
In this case a0, a value of a0 accurate within the pre- 
cision of measurement, has been determined. Having 
determined ~0, its s tandard deviation may then be 
calculated. The equations supporting this procedure 
are now derived. 

B. Estimates under the assumptions 

The sample density function of the ~vi~ is 

H (1/}"(27~)ai) exp - [(1/2 a~)(Y~i~- 0k-  ei) e] 
i.~ 

and its logarithm is: 

L(ao, ai, el)= - N  In l'(2:z) 

- ~ ' n i  In a~-( l /2 )~ ' (1 /a~)~ ' (v2 i . , -Oi -e i )2 .  (1) 
i i a 

The maximum likelihood estimates of the parameters, 
a0; a l , . . . ,  am; O , . . . , e m  are functions of the ~f,~, 
and are denoted by do; ~t, . . . ,  8m; gt . . . .  , gin. 

These estimates maximize the sample density func- 
tion or, equivalently, its logarithm. Since a side 
condition is involved, i.e., ~ ' e i = 0 ,  the maximum 

i 
likelihood estimates must satisfy the (2m+2) equa- 
tions : 

a(L+).i._Vei)/~ao O, a(L+,~M,_ e~)/oai = O, 
i i 

~,(L+ ) .M~'ed&i = O, ~ e i  = 0 . 
i i 

Note: The Lagrange multiplier ) . i  is used only in 
connection with the relation ~ e ~ = 0  to facilitate 

i 
differentiating the above equations. The relation 
a0 sin O,=k, is used to eliminate the 0~ from the 
problem of determining the maximum likelihood 
estimates. 
Carrying out the indicated derivatives and setting 

the partial derivatives equal to zero to obtain equa- 
tions for maximum likelihood estimates yields: 

~(L + )..,v .-~ ei)/~ao 
i 
= -- (1/ao) 2 '  (tan Oi/a~) ~'_.: (vA.,--Oi-e~)=O 

i a 
~(L+ ) , i  V ei/&i 

i 
= - (1/a~) 2" (vdi,- 0 i -  ed + 2.i = 0 

~(L + ) . i  v I - - ,  e i ) /  O a i  
i 

= -- (nijai)+(1 ; a 
o~ 

~Tei=O. 
i 



K. E. B E U ,  F.  J .  M U S I L  AND D. R. W H I T N E Y  1299 

Using the definitions for ~p¢ and s~., these equations 
may be rewritten: 

- ( 1 / a o ) ~ ' ( n i  t an  Oi/di)(V,)i--Oi--ei)=O (2) 
i 

(n~/(~)(~v~-O~-e~)+ L ~ = 0  (3) 

3 o -(ni/(ri)+(nd(r'i)[s~+(~vi--O~--ei)"-]=O (4) 

~_'e~ = 0 .  (5) 
i 

Combining equations (2) and (3) gives 

(;ti/a0) ~" tan 0~ = 0  
i 

which implies ).-~t=0 since l / a 0 # 0  and tan 04:0. 
Equations (2), (3), and (4) then reduce to 

2 2 
(~i ~ 8 i  

e~ = W~- 0¢ . 
A 

The maximum likelihood estimates, do, ~i, di, and 0i 
then satisfy the equations: 

do sin 0i = ki (6) 
AO o ~ =s~ (7) 

e~,= v,~- ~, (8) 

~ "  g,~ = 0 .  (9) 
i 

Explicit values for do and & can be obtained t)y 
successive approximations using equations (6) to (9) 
as indicated in Section 3, B of this paper. By sub- 
st i tuting in equation (1), the maximum of the loga- 
r i thm of the sample density function under thc 
assumptions then is 

L(do, ~i, &)= - N  In l , ' ( 2 ; r ) - ~ ' n ~  In s i - - 2 Y / 2  . (10) 
i 

Since L(do, c~, gi) is the number desired and it 
does not depcnd on the vahms of do and di, it will 
be unnecessary in many cases to compute these two 
estimates. 

C. Estimates under the assumptions and hypothesis 
The sample density function of the ~0i, under the 

hypothesis is 

H (1 / [ ' (2n)m)  exp  - [ ( l / 2  c~)(y~i,, - 0d ~] 

and its logarithm is 

L(ao, (~) 
= - N In l.'(2~) - '~ n~ In ai - (1/2) '*-- (1/a'~) ~'~, (~vi~ - Oi) 2 

i i ,,x 

= - N  In 1 ( 2 ~ ) - ( 1 / 2 ) ~ ' n ~  In a ~ - ( 1 / 2 ) V ( n d a ' ~ )  
i i 

x [s~ + (~vi-00~]. (11) 

Differentiating with respect to (r~ only and setting 
the partial derivative equal to zero yields- 

3 o ~L(ao, (*i)/ ~(~i = - n d  (~i + (hi~ (,~) [s: + ( ,f~ - 0d 2] = 0 

which reduces to 

~=s~+(~,-O,)~. 

The maxinmm likelihood estimates ~o, *°  * aT, and 0~ then 
satisfy the equations" 

ao sin Oi=ki (12) 

a~ = s~. + (~v~ - 0i) 2. (13) 

By substituting in equation (11)" 

L(ao, ~ )  

= - N In I (2~r)- (1/2) ~ '  n~ In [s~ + ( ~ -  0~) 2] - N / 2 .  
i (14) 

Note" Another equation tha t  the estimates must 
satisfy may be obtained from ~L/~ao=O; however, 
this equation is not so amenable to numerical 
calculation. 

^ 

The value of a0 can now be obtained by finding that  
value of a0 which maximizes L(ao, ~i) or, equivalently, 
which minimizes" 

W(ao) = - 2  In 2oR 

= - 2[L(ao, g~.) - L(do, ~ ,  &)] 

=_wni In [s~+(~v~-Oi)2]-_~ni In s~ 

=T" n ' l n _ l + - ~ t  .... / 

subject to : ao sin Oi = ki. 

(15) 

By plot til[g W(a0) versus ao, Win, the minimum of 
W(ao), and ao can be found by inspection (see Figs. 

2 and 4). Once ~0 is found, 0i and ~ can be calculated 
from equations (12) and (13). 

2 I). Determination of Sao 
Under the hypothesis, an estimate of the variance 

of ao is given by 

1/S~o = E{[ ~L(ao, a,)/~a0] 2} 
! o -- E { [ -  (1/ao) _" (n~ tan O~/ a~) (v2~ - 0i)] 2} 

i 

I 2 ') = (1/%) v (n 7 tan 20i/a~)E(yoi- Oi) 2 
i 

= (1/ao)~ (n~ tan 20i/a~). (d~/n~) 
i 

= (1/%) 2 '  (n, tan 2 0,/a~.) 
and i 

(nda~) tan ~ 0i . (16) s~,, = as/ )_~ "~' 
i 
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A P P E N D I X  I I  

E x a m p l e  o f  L R M  c a l c u l a t i o n  u s i n g  B o n d ' s  d a t a  c o r r e c t e d  f o r  r e f r a c t i o n  

1. D e t e r m i n a t i o n  of d o (da ta  for Fig. 3): 

(hkl) (111) (333) (444) 27e~ Es t i ma t e  of a 0 
i 

k~ 1.3341209 4.0023621 5.3364830 

1st e s t ima te  5.43073750 A 

~i 14-2208250 47.4750750 79.3098250 
0~ 14.2209055 47.4750577 79-3097121 
el -- 0.0000805 + 0-0000173 + 0.0001129 + 0.0000497 

2nd es t ima te  5-43073700 

~ 14-2208250 47.4750750 79.3098250 
0~ 14.2209069 47.4750635 79-3097400 
ei --0.0000819 + 0.0000115 + 0.0000850 +0.0000146 

3rd es t imate  5.43073625 

~ 14.2208250 47.4750750 79.3098250 
0~ 14.2209089 47.4750721 79.3097819 
e$ -- 0-0000839 + 0.0000029 T 0.0000431 -- 0.0000379 

2. D e t e r m i n a t i o n  of ~o (part ial  da t a  for  Fig. 4) : 

a 0 s in  0 0 ei = ~ i  --  Ot e~2/8~ 2 log10 ( 1 + (ei2/8i2)) 

(I 11) ref lect ion 5.43073575 0"2456611703 14-2209102 -- 0"0000852 0"0713 0"029911 
~pt ---- 14"2208250 5.43073600 0.2456611590 14"2209095 -- 0"0000845 0"0702 0"029465 
st 2 ---- 10"1875 x l0 -8 5.43073625 0"2456611476 14-2209089 --0"0000839 0"0690 0"028978 

(333) ref lect ion 5.43073575 0.7369834004 47.4750779 -- 0-0000029 0-0001 0-000043 
y~ ----- 47.4750750 5-43073600 0.7369833665 47.4750750 0.0000000 0.0000 0"000000 
s~ ~ = 9-1875 × 10 -a 5.43073625 0-7369833326 47.4750721 + 0.0000029 0.0001 0"000043 

(444) ref lect ion 5.43073575 0.9826445707 79.3098099 + 0.0000151 0.0003 0.000130 
y~i ---- 79.3098250 5.43073600 0.9826445255 79.3097959 +0.0000291 0-0010 0-000434 
si 2 ---- 87.1875 × 10 -s 5.43073625 0.9826444802 79.3097819 +0.0000431 0.0022 0.000954 

W(a o) = 
a 0 ~'ei ~ ' logl0 (l+(e~2/s~)) ,~n~ In (l+(e~2/s~2)) 

i i i 
5.43073575 -- 0-0000729 0.030084 0.277 
5.43073600 - 0-0000554 0.029899 0.275 
5.43073625 - 0.0000379 0-029975 0.276 

Wm is ob ta ined  by  p lo t t ing  W(ao) versus a o. Wm= 0.2748 and  ~0= 5.43073604 A if L R T  is satisfied. 

we is equal  to 5.991 a t  0.05 significance level and 2 degrees of f reedom,  t t e n c e  Wm is less t han  we and  L R T  is sat isf ied 

3. Variance,  s t a nda rd  dev ia t ion  Sao, and 95°0 conf idence in terva l  for a0: 

(hkl) 0~ (degrees) ~i2× l0 s (degrees) ~ 2 ×  1011 (radians) 

(111) 14-2209094 10"902 3"3209 
(333) 47.4750745 9" 188 2-7988 
{444) 79.3098245 83-271 25.3658 

8ao 2 = 302/.~(ni/(~i 2) tan  2 ~ ---- (5.430736)2/(62-015914 × 101°) 
i 

Sa0 = 6"9 × 10 -~ -- 0"000007 

~,o, ---- = +0"000014 A 90/o conf idence in te rva l  for a 0 ___ 1.96 Sao _ 

R e f e r e n c e s  

BEU, K .  E .  (1957).  Proc. A S T M ,  57,  1282. 
BEU,  K .  E . ,  MusIL ,  F .  J .  & WHITNEY, D. ]:~.. (1959).  

A n  X - R a y  Diffraction F i l m  Technique for  the Accurate 
and Precise Measurement  of Lattice Parameters. U S A E C  
R e p o r t  G A T - T - 5 6 6 / R e v .  3. 

BEU, K .  E . ,  MUSIL, F .  J .  & %VttITNEY, D.  ]7~. (1961).  The  

Precise and Accurate Determination of Lattice Param-  
eters Using F i l m  Powder Diffraction Methods: The 
Likelihood Ratio 3lethod. U S A E C  R e p o r t  G A T - 3 9 2 .  
( In  p r e p a r a t i o n . )  

BO~D, ~,V. L .  (1960).  Acta Cryst. 13,  814. 
BRADLEY, A. J .  & JAY, A.  H .  (1932).  Proc. Phys.  So(,. 

(Londoyt), 44 ,  563. 
COIIEN, ~I. U .  (1935).  Rev. Sci. Ins trum.  6, 68. 



K. E.  B E U ,  F.  J .  M U S I L  AND 1). R.  W H I T N E Y  1301 

HODGMAN, C. D. (1959a). Handbool: of Chemistry and 
Physics. 40th ed., p. 218. Cleveland: Chemical Rubber 
Publishing Co. 

HODGMAN, C. D. (1959b). Handbook of Chemistry and 
Physics. 40th ed., p. 216. Cleveland: Chemical Rubber 
Publishing Co. 

LADELL, J., PARRISI-I, ~V. & TAYLOR, A. (1959). Acta 
Cryst. 12, 253. 

MOOD, A. M. (1950a). Introduction to the Theory of Statis- 
tics, p. 257. New York: McGraw-Hill. 

MooD, A. M. p1950b). Introduction to the Theory of Statis- 
tics, p. 259. New York: McGraw-Hill. 

MUELLER, M. H., HEATON, L. & MILLER, K. T. (1960). 
Acta Cryst. 13, 828. 

MUELLER, M. H. & I-IEATON, L. (1961). Determination of 

Lattice Parameters with the Aid of a Computer. USAEC 
Report ANL-6176. 

PARmSH, W. (1960). Acta Cryst. 13, 838. 
PIKE, E. R. & WILSON, A. J. C. (1959). Brit. J.  Appl. 

Phys. 10, 57. 
STRAUMANIS, M. E.  & IEVINS, A. (1940). The Precision 

Dcterminatio~ of Lattice Constants by the Asymmetric 
Method. [Originally published in German by Julius 
Springer, Berlin, and translated by K. E. Beu {April 15. 
1959) as USAEC Report GAT-T-643.] 

STRAUMANIN, M. E. {1960). Acta Crys'. 13, 818. 
VOGEL, R. E.  & KEMPTER, C. ~.  (1959). A Mathematical 

Technique for the Precision Determination of Lattice 
Constants. USAEC Report LA-2317. 

Acta Cryst. (1962). 15, 1301 

Precise and Accurate Lattice Parameters  by Fi lm Powder Methods.* 
II. An Exact Eccentricity Correction for Cylindrical Fi lm Cameras~ 
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An exact analytical method is presented which permits correcting cylindrical diffraction film 
measurements for sample eccentricity. This method is based on measuring the camera radius in 
three directions and using these measurements to calculate the eccentricity vector (P, a), the true 
camera radius R, and the eccentricity corrections A~0 or/30. Radius measurements can be made and 
P can be calculated to about +__ 0.001 ram. using standard high quality dial indicators, micrometers, 
and gage blocks. For eccentricities normally tolerated in precision cameras (about 0"01 ram. in 
cameras 50 to 150 mm. in diameter), the exact corrections may differ significantly from those 
obtained using the approximate method of Bradley & Jay, depending on the orientation of the 
eccentricity vector. Exact eccentricity curves are given for a camera especially built for the accurate 
determination of lattice parameters. 

1. I n t r o d u c t i o n  

Bradley & J a y  (1932) developed an approximate  
method for making eccentr ic i ty  corrections on films 
from cylindrical powder cameras by assuming t h a t :  
(1) the component  of eccentr ici ty perpendicular  to the 
pr imary  X-ray  beam is negligible, and (2) the p r imary  
beam consists only of parallel  rays. Wi th  improve- 
ments  in powder camera construct ion and measuring 
techniques (Straumanis  & Ievins, 1940, 1940a) so t ha t  
diffraction angles could be measured on film with 
higher precision (about ±0.001 o):~ i t  seems worth- 
while to re-evaluate existing correction procedures. 
I t  will be shown tha t  the assumptions of Bradley & 
J a y  restrict  the accuracy of their  correction procedure 

* This work was performed under Contract AT-(33-2)-1 
with the U.S. Atomic Energy Commission. 

t Paper  I, Bcu, Musil & Whitney (1962). 
~: 9~ is defined according to the Bragg equation in the form: 

n3, = 2d cos q~. 

when using the  ±0-001 ° criterion. Averbukh  & 
Tolkachev (1957)el iminate  the perpendicular  compo- 
nent  assumption but  still base their  der iva t ion  on the 
parallel beam assumption.  S t raumanis  (1940b) by- 
passes both  assumptions exper imental ly ,  but  his 
method cannot  be used to calculate eccentr ic i ty  cor- 
rections as a funct ion of diffraction angle. Thus, an 
exact  eccentr ici ty correction procedure as a funct ion  
of diffraction angle seems desirable. 

I t  is a purpose of this paper  to present  a rigorous 
der ivat ion of the eccentr ici ty correction which in- 
cludes both  perpendicular  and  parallel  components  of 
eccentr ici ty and which is based on the  usual ex- 
per imenta l  condit ion of a coll imated but  divergent  
p r imary  X-ray  beam. The results are presented as 
correction curves of _/J q9 versus 9~ or A0 versus 0 
even though diffract ion measurements  are usually 
made in terms of 20 or 4~. A0 or glq~ corrections can 
be made direct ly on calculated 0 or q~ values after 


