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Precise and Accurate Lattice Parameters by Film Powder Methods.
I. The Likelihood Ratio Method*
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A statistical method called the Likelihood Ratio Method (LRM) has been developed which permits
determining lattice parameters accurately within the precision of the Bragg angle measurements if
these measurements have been individually corrected for systematic errors. The LRM incorporates
a test (the LRT) which indicates when the systematic errors have been removed from the X-ray
data in a valid statistical manner. The LRM is applicable to all diffractometer or film methods
which can be corrected for systematic errors.

An application of the LRM is given involving analysis of the lattice parameter data on zone
refined silicon, published by W. L. Bond. Of the three systematic error corrections used by Bond,
only the application of the refraction correction satisfied the LR7T. Using this correction, the
maximum likelihood estimate of a, under the hypothesis of ‘no remaining systematic errors,’
designated 50, was calculated to be 5:430736 +0-000014 A (959 confidence limits) at 25 °C. and based
on a Cu Kx, wavelength of 1-540510 A. The value &, for this sample of silicon is accurate within
the stated precision (one part in 390,000). This implies that, if another individual measured the
lattice parameter of this sample with the stated precision using the same wavelength value and a
diffraction technique which permits correcting the individual measurements for systematic error in a

valid statistical manner, his average value would agree with the above value within one part in

390,000 at the 959 confidence level.

1. Introduction

In recent years, lattice parameter data using X-ray
techniques have been reported with precisions ex-
ceeding one part in 50,000 (Straumanis & Ievins, 1940;
Straumanis, 1960; Vogel & Kempter, 1959; Mueller,
Heaton & Miller, 1960; Mueller & Heaton, 1961;
Bond, 1960). In view of the high precisions claimed
for a wide variety of tcchniques, it is disconcerting
to observe the poor agreement obtained by various
observers on samples distributed in connection with
the International Union of Crystallography (IUCr)
Project on Lattice Parameters (Parrish, 1960). In
several respects this project was conducive to ob-
taining good agreement; i.e., the same sample was
subsampled and distributed to participating labora-
tories, and it was agreed to use the same X-ray wave-
length values, refraction corrections, expansion co-
efficients, etc. In spite of these favorable circum-
stances, the agreement turned out to be relatively
poor compared to the reported precisions. This clearly
indicates that systematic errors in the measurements
of the various laboratories have not been eliminated
from the lattice parameter calculations. Thus, while

* This work was performed under Contract AT-(33-2)-1
with the U.S. Atomic Energy Commission.

the precision may have been good, the accuracy was
relatively poor.

A major limitation of any lattice parameter tech-
nique described in the literature is the lack of a
suitable statistical yardstick for assessing the ac-
curacy of the calculated lattice parameter values.
For example, a least-squares extrapolation with or
without weighting, in spite of its statistical implica-
tions, does not provide data for assessing the accuracy
of the lattice parameter thus determined. This makes
it difficult or impossible to determine whether or not
the systematic errors have been truly removed within
the precision of measurement.}

It is the purpose of this paper to describe a statistical
method, called the Likelihood Ratio Method, which
indicates when an accurate value of the lattice
parameter has been attained after the systematic
crrors have been removed within the precision of
measurement; to give an example of one case in

1 It is assumed that only precisions of at least =+ 0-0059,
or one part in 20,000 are of interest here. Wavelength accuracy
is not included in this discussion. As long as the same wave-
length value (peak, center of gravity, or other suitable feature
of the characteristic wavelength distribution) is used by all
concerned, the wavelength and lattice parameter accuracy
problems can be handled separately.
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which this has been accomplished; and to discuss the
significance of these findings. This method was first
presented in preliminary form by title (Beu, Musil &
Whitney, 1959) at the IUCr Lattice Parameter Con-
ference held in Stockholm, Sweden, on June 10 and 11,
1959.

This paper represents part of a project to evaluate
the maximum practical precision and accuracy attain-
able in lattice parameter determinations using a
cylindrical film powder diffraction method. This
project does not involve the asymmetrical diffractom-
eter approach (Pike & Wilson, 1959; Ladell, Parrish
& Taylor, 1959), nor does it involve extrapolation
methods (Bradley & Jay, 1932; Cohen, 1935) with
their inherent limitations. It does not deal with the
wavelength accuracy problem which, except for the
centroid method (Pike & Wilson, 1959), can be
handled separately from the parameter problem.

The approach used is a modification of the Strauma-
nis method (Straumanis & Ievins, 1940) and involves
measuring diffraction line positions on film to a
precision of about +0-001° ¢, correcting each meas-
urement for geometrical systematic errors, and cal-
culating the lattice parameter from the corrected
data by means of a rigorous statistical method called
the Likelihood Ratio Method (LRM). The LRM pro-
vides an accurate estimate of the lattice parameter
a0, its variance sa,, and a test (the Likelihood Ratio
Test) which indicates whether or not the systematic
errors have been eliminated from the measurements
in a valid statistical manner. Examples of the ap-
plication of the LRM are given.

2. Definitions and assumptions
A. Definitions

ei is the unknown systematic error at 0; in de-
grees 6.
0, is the true but unknown value of the Bragg

angle 0, in degrees 6 [approximate values of 0;
are also used in determining W(ao), see Section
3, B].

Vin is the ath measurement of the ith diffraction
angle, corrected for known systematic errors,
in degrees 0.

wi is the average of n; measurements of y;,.
yi=(1/ni) Xy,

o; is the variance of the y,, (see Assumptions).

st is the experimentally determined variance of
Yia- 'stz' = (l/nl) 2 (’lpia_ V’i)z-

k; =nA)(h2+k2+12)/2 (for cubic materials)

where n, 4, h, k, and [ have their usual crystallo-
graphic meanings.

ao is the true lattice parameter of a cubic material
in A [approximate values of ao are also used
in determining W(ao)].

H is the hypothesis of ‘no remaining systematic
errors’; e;=0 for all 7.
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W(ao) is a function used to determine ao and to test H.

Wm  is the minimum value of W(ay).
w, is the critical value of the test statistic, Wp.
€ is the significance level of the test.

do, é;, 6%, 0; are maximum likelihood estimates of these
parameters under the Assumptions (see below).
Single carets are used to indicate these esti-
mates. Otherwise these parameters are defined
exactly as given above.

ao, G2, 0; are maximum likelihood cstimates of these
parameters under the hypothesis H. Double
carets are used to indicate these estimates
under H.

. Assumptions

Y. is @ normal random variable.

The y;, are independent for:

t =1,...,m (the number of diffraction angles
measured).

x =1, ..., n; (the number of measurements at the
ith diffraction angle).

Y n;=XN (the total number of measurements).
;

3. The mean or expected value of y;, is given by:
E(p.)=0i+e;

where 0; satisfies the Bragg equation: aosin0; = k;.
4. ;'ei=0.

==

(2
5. The variance of the y,,, denoted by o’f_ia, depends
only on the angle, i.e.:

2 __ 2
O-V'ia = 0j.

3. The likelihood ratio method (LRM)

A. Philosophy

This statistical approach to the accurate determina-
tion of lattice parameters is called the Likelihood
Ratio Method (abbreviated LRM) since the crux of
the method depends on the application of a statistical
test called the Likelihood Ratio Test (LRT) (Mood,
1950). The LR M is based on the principle that a lattice
parameter for a given crystalline sample is the same
regardless of the (hkl) reflection from which it is
calculated. By measuring the angular positions of at
least three reflections and correcting the measured
Bragg angles for all known systematic errors,* the
lattice parameter values calculated from the corrected
data should agree among themselves. If they do, this
indicates that the systematic errors have indeed been
removed from the corrected data within the precision
of measurement. The LRT indicates in a valid statis-

* Tt is not the purpose of this report to describe how the
systematic errors may be removed from the individual meas-
urements. This has already been indicated for diffraction
peak measurements using counter (Bond, 1960) and film
(Beu, Musil & Whitney, 1959) techniques and for centroid
measurements (Pike & Wilson, 1959).
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tical manner whether or not this has been accom-
plished.

The LRM utilizes corrected diffraction data of high
precision and provides an accurate estimate of the
lattice parameter and its standard deviation after it
has been shown that the systematic errors have been
removed from the data, according to the LRT. The
LRM is developed here for the cubic case which has
only one lattice parameter, ao. It can, however, be
extended to cases involving additional parameters.

B. LRM procedure

The Bragg angle for each (hkl) reflection of interest
is measured n; times, and y: and s} are calculated
The maximum likelihood estimates (Mood, 1950a)
of thg parameters under the assumptions, do, i, é;,
and 0; are then calculated using the following rela-
tionships [a derivation of the equations used in the
LRM is given in Appendix I and in a comprehensive
report (Beu, Musil & Whitney, 1961)]:

~
(ioSln 0;' = ki
~
o} =5}
g A
é = ypi—0;
Jé=0.

7

In practice, do, is determined by estimating ao, cal-
culating the 6;, summing the e; values, and plotting
Ye; versus ap for several ap cstimates.* dp is that
i

* A suggested method for the first estimate is to calculate
a, from the corrected values of y; for each diffraction line and
to use the average of theso values of a;. The values of 6;
are then calculated from this average a,.

28
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value of ao corresponding to X'e;=0 (see Figs. 1 and 3).

]
é; may then be calculated using the equations:
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Fig. 1. Ze; versus g tor Bond’s data on zone refined silicon.
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Fig. 2. W(q,) versus a, for Bond’s data on zone refined silicon.
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~ ~
dosin0; = k; and é; = y;—0;.

The é; nced be determined only if subsequent calcula-
tions indicate the presence of systematic errors beyond
the precision of measurement.

The hypothesis is then made that there are ‘no
remaining systematic errors’ in the corrected 1,
measurcments :

H: ey=e2=e3=...=ep=0.

The maximum likelihood estimates under the hypo-
thesis, do and o7, are determined as follows:
A function W(ao) is given by the equation:

(’Pi—__ot)zJ

5
oh

W (ao) =;‘ n; In {l +

where 0; is defined by ao sin 0;=Fk;.

/.
2 /

/

N

- N5. 43073679 = A,

Zei x 10%, °0

1/

-3 /

-5
5.43073620

5.43073660 ,\5.43073700 5.43073740

a0, A.

Fig. 3. Ze; versus g, for Bond’s data corrected for
i

refraction only (expanded scale).

A graph of W(ao) versus ao in the vicinity of do is
examined for a minimum value of W(ao). The value
of ap corresponding to this minimum is ao and the
minimum value of W(ao) is designated W (o) or W
(see Figs. 2 and 4 for typical graphs). The maximum
likelihood estimate f; may then be determined from
the equation: R A

&0 sin 01' = k,; .
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Fig. 4. W(a,) versus a, for Bond’s data corrccted for
refraction only (expanded scale).

Using the values of g, just determined, 42 is caleulated
from:

2

0= s+ (i —0:)2.
An estimate of the standard deviation of ao, denoted
by s4, may then be calculated using the equation:
5

0

= 833 (n:/62) tanz 0; .
1

The values of do and 84, just calculated have signif-
icance only after it has been shown statistically that
ao has no remaining systematic errors. This is accom-
plished by using the likelihood ratio test (LRET)
(Mood, 1950a). W(ao) is derived using the likelihood
ratio, and W, the minimum value of this function
in the vicinity of ao, is used as the statistic to test H.
As a consequence of a theorem relating to the likeli-
hood ratio (Mood, 19508), W, can be shown to be
distributed approximately like chi-square (y2) with
(m—1) degrees of freedom where m is the number
of diffraction lines measured. To test H, W,, is com-
pared to a critical value, w,, where w, and ¢ are
defined as follows:

0
\ 42 distribution,* (m—1) df.=¢.

* The #2? distribution is given by the cquation:

F(u) = Q:‘[.z(n 22 mr/2j9n/2| (n — 2)/2]1] dur .
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¢ is the significance level of the test chosen by the
investigator (a commonly used value for ¢ is 0-05).
After having chosen ¢ and having looked up w, in
the table, (Hodgman, 1959a), the comparison is made
with W,.

If Wn > w,, the hypothesis is rejected and we may
conclude with 100(1—¢) percent confidence that
systematic errors remain in the corrected measure-
ments and calculations. In this case it is nccessary
to re-evaluate and improve the techniques used for
removing systematic errors. If W, <w,, the hypothesis
is not rejected; it is accepted at the & significance
level that there are ‘no remaining systematic errors’

in the calculated values of @ and s,,.

C. Features of the LRM

1. The most important feature of the LRM is that
it provides a valid statistical criterion for determining
the accuracy of a lattice parameter calculation based
on the premise of internal self-consistency of the data;
i.e., a lattice parameter value for a given sample is
the same within the precision of measurement regard-
less of which (hkl) reflection is used to calculate this
parameter.

2. All systematic error factors which are related
directly to 6 will be included in the LRM evaluation
of accuracy. Even those factors which require a con-
stant correction in { for each diffraction angle will be
included in this evaluation. The zero setting error is
a factor of this type and is of special importance in
diffractometer work. The major factor which does not
enter directly into the LREM evaluation is the X-ray
wavelength and, as has been pointed out in the In-
troduction, wavelength accuracy can be handled sep-
arately from 6 accuracy.

3. A comparison of W, calculated after making each
systematic error correction, with the critical value w,
obtained from the chi-square distribution, will indicate
if the correction is valid. If W, remains about the
same or increases, then the correction is either in-
significant or improper. The correction is useful only
if W decreases. Finally, after all corrections are made,
if Wp, is still greater than w,, then either one or more
corrections are of the wrong magnitude or there are
additional unknown systematic errors. Only if W, <w,
can it be claimed that all systematic errors have been
removed within the precision of measurement at the
chosen significance level.

4. If Wn<w, this implies further that dispersion
and the asymmetry of the characteristic wavelength
distribution have a negligible effect at the & signif-
icance level on the calculated value of the lattice
parameter. This does not, however, indicate whether
the characteristic (peak, center of gravity, etc.) used
to calculate the lattice parameter is an accurate value.
It only indicates when W, <w,, the wavelength distri-
bution and its resolution, or lack of resolution, into

LATTICE PARAMETERS BY FILM POWDER METHODS. I

the o~-a2 doublet for example, does not have a
significant effect on the accuracy of the calculated
lattice parameter value based on the self-consistency
criterion.

5. After correcting the w; values for systematic
errors, one at a time, the magnitude of the é; values
may be observed for Xe;=0. If the é; values have

1

not decreased significantly for a given systematic
error correction, then the technique for making that
correction is suspect and should be re-examined.
Thus, the LRM is useful in pinpointing the sources
of systematic error and in evaluating the techniques
used in correcting for systematic errors. These points
will be illustrated in the next section.

4. Application of the LRM
A. Bond’s data on zone refined silicon

In order to demonstrate the utility of the LRM,
lattice parameter data of very high precision and
potentially great accuracy were chosen. These data
were obtained by Bond (1960) on a single crystal of
zone refined silicon using a special diffractometer
which could be used to make measurements sym-
metrically about 20=0° and 180°.

Bond’s method of measuring diffraction angles
(crystal position rather than counter angle) results
in the elimination of eccentricity, absorption, asym-
metrical source profile, and zero errors from the raw
data. The measured diffraction angles, however, still
require correction, according to Bond, for axial
divergence, Lorentz and polarization (LP) factor,
and refraction. Table 1 in Bond’s paper lists the
measured diffraction angle values together with the
separate corrections to these values. Bond measured
the peak positions of the (111), (333), and (444) reflec-
tions of silicon using the centerline method (Beu,
1957).%

A summary of Bond’s data together with LRM
results on his data are given in Table 1. An ab-
breviated LRM calculation using Bond’s data cor-
rected for refraction is given in Appendix II. To
facilitate interpretation of Table 1, degrees 0 from
Bond’s Table 1 were converted from min. and sec.
to decimals. An X-ray wavelength for Cu Ko =
1-54051 A was used as recommended in the TUCr
project (Parrish, 1960) instead of the Siegbahn wave-
length of 1-540501 A (1-537395 kX.U.) used by Bond.
Lattice parameter and wavelength values were con-
verted from kX. units to A using the kX.-to-A ratio

* We have found the centerline method to give the most
reproducible measure of the peak position, especially for sharp
peaks where small intensity variations near the peak make
it difficult to determine the true peak position precisely
(to about 0-001° 0) by inspection, parabola fitting, or other
methods.
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Table 1. LRM data calculated from Bond’s data on zone refined silicon
(A=1-54051 A)
Exper. Type of Uncorrected  Correction Corrected Standard
no. correction (hkl) y; (°6) (°0) y; (°0) & (°6) W a, (&) deviation (A)
1 None (111) 14-22263 — o +0-00153
(333) 47-47598 — — + 0-00009
(444) 79-31213 -— — —0-00162
16-96 5-430685
2 Lr (111)  Same as (1) +0-00000 14-22263 +0-00152
(333) Same as (1) + 0-00000 47-47598 + 0-00006
(444) Same as (1) +0-00017 79-31230 —0-00160
16-41 5-430685
3 Axial (111)  Same as (1) —0-00004 14-22259 +0-00153
divergence (333) Same as (1) —0-00020 47-47578 +0-00001
(444) Same as (1) —0-00070 79-3114¢ —0-00158
16-20 5430700
4 Refraction (111) Same as (1) —0-00180 14-22083 —0-00007
(333) Same as (1) —0-00090 47-47508 —0-00001
(444) Samo as (1) —0-00230 79-30983 +0-00001
0-275 5430736 +0-000007
(30) (Sap)
A LP +axial (111)  Same as (1) —0-00184 14-22079 —0-00010
divergence + (333) Same as (1) —0-00110 47-47488 —0-00007
refraction (444) Same as (1) —0-00283 79-30930 +0-00016
0-65 5-430747 =+ 0-000007

of 1:00202.* The uncorrected w; values of Table 1
correspond to the mean 6 values given by Bond.
The axial divergence and refraction corrections were
converted from kX. units to degrees 0.

B. Analysis of Bond’s data

We are now ready to observe the statistical signif-
icance of the systematic error removal from these
data using Bond’s corrections. This is done by com-
paring the value of Wy at each level of removal with
the critical value of the chi-square distribution, wo.os.
The critical value of wo.o5 is 5:99 as can be determined
by inspecting a chi-square distribution table (Hodg-
man, 1959a) at the 0-05 significance level and two
degrees of freedom (for three diffraction lines).

The hypothesis of ‘no remaining systematic errors’
is rejected if Wp > 599 and is not rejected if
Wi <5-99. On this basis we can see that the hypothesis
would be rejected (Wn > 16) for experiments No. 1, 2,
and 3 listed in Table 1. It would be expected that the
hypothesis would be rejected for No. 1 since W, in
this case was determined for the uncorrected data.
It is perhaps a little surprising that the W, values
for the LP (No.2) and axial divergence (No.3)
corrections do not change significantly compared to
W for the uncorrected data. This implies that the
LP and axial divergence corrections do not reduce the
systematic errors significantly.

Next, we observe that W, =0-275 when using the
refraction correction. Since this is less than 5-99, this
implies that the refraction correction alone has re-

* Since the wavelength accuracy problem is being handled
separately from the LR, the fact that A (1-54051 A) and the
conversion faector (1:00202) are given only to five decimals
is no limitation on reporting lattice parameter accuracy and
precision to six decimals, as will be done in the next section.

moved the systematic crrors from the data within
the precision of measurement and do, the maximum
likelihood estimate of ao under the hypothesis H, is
that value of a ao correspondmg to Wn=0-275 (Fig. 2)
The value of o is 5-430736 A (at 25 °C.) and this is
an accurate value of ag for this sample of silicon within
the premsmn of measurement.

After do was determined, the estimate of the
standard deviation of o, Sa,, was calculated to be
0-000007 A. Tt is mterestmg to note that s, is com-
parable to the precision with which high angle dif-
fraction lines can be measured even though both high
and low angle lines are used in the LRM calculation.

The fact that the refraction correction alone results
in a value of @y accurate within the precision of meas-
urement may be further demonstrated by examining
the X'e; versus ap and W(ao) versus ag curves in more

1
detail. It will be recalled that do, the estimate under
the assumptions, is determined when "e, =0 and that

do, the estimate under the hypothes1s is determined
at the minimum value of W(ao). If do differs from do
by less than the precision of measurement, then this
provides further verification that the hypothesis of
‘no remaining systematic errors’ has been satisfied.
Fig. 3 is a greatly enlarged plot of Je; versus ag

in the vicinity of Xe;=0. The value of do, by direct

interpolation,* is 5-43073679 A. Fig.4 is a greatly
enlarged plot of W(ao) versus a¢ in the region of
minimum W(ao) Using the centerline method (Beu,
1957), Wm is 02748 and &o corresponding to this
minimum* is 543073604 A. The difference between

* Appendix II gives the calculations for these values of
dy and Gy, as well as for W(a,) and sgq.
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do and o is 0-00000075 A. This difference is about
one-tenth as large as sq,, thereby confirming the fact
that the value of ao is indeed accurate within the
precision of measurement.

Values of the silicon lattice parameters and their
deviations calculated by Bond and by us using the
LRM are summarized as follows: ao=5-430736 +
0-000014 A at 25 °C. This is an accurate estimate of
ao and its deviation at the commonly used 95 percent
confidence level. This value of @y is based on the X-ray
wavelength of 1-54051 A for Cu K«i, as recommended
for the IUCr projectt (Parrish, 1960). The 95 percent
confidence limits of +0-000014 A are based on four
sets of measurements of the (111), (333), and (444)
reflections (a total of twelve measurements made by
Bond). It is interesting to note that Bond’s method of
calculating an ao value for each of threc (Akl) reflec-
tions results in a poorer precision (one part in 290,000),
calculated at the 95 percent confidence limits, than
when using the LRM on exactly the same data (one
part in 390,000). The value of ao=>5-430747 A using
the LRM with all of Bond’s corrections differs from
@ by 0-000011 A and Bond’s weighted value of
ao=5430752 A (converted from kX. umtq) differs by
0-000016 A. Neither of these values is significantly
different from &, at the 0-05 significance level as
determined by ¢ and F tests (Hodgman, 1959b).
Hence all of these lattice parameter values are ac-
curate within pr(,mswn limits based on Say- Never-
theless, the value of ao is to be preferred since it is
the maximum likelihood estimate of ao under the
hypothesis.

APPENDIX I

Statistical analysis and derivation of equations
used in the LRM

A. Analysis

Using the assumptions stated in Section 2, B of
this paper, the lattice parameter, its accuracy and
precision are estimated in terms of a hypothesis of
‘no remaining systematic errors’ in the corrected
Bragg angle measurements, ;. The hypothesis is
tested using the likelihood ratio Arr. The likelihood
ratio (Mood, 1950a) as applied to this problem is de-
fined in terms of its logarithm:

In Jrx= L(do, G:) — L(do, 61, &)
where L(&o, 0;) is the logarithm of the maximum
value of the sample density function (y;, are the
sample values) consistent with the hypothesis and
assumptions, and L(do, 6:, &) is the logarithm of the
maximum value of the sample density function con-
sistent with the assumptions.

Large values of A.r (or its logarithm) are regarded
as evidence that the hypothesis is true while small

+ If the wavelength of 1-540301 A (1-537395 kX U.) is used
(Bond, 1960) then a,=5-430704 A,

BY FILM POWDER METHODS. 1

values indicate the hypothesis to be false, i.e., that
systematic errors still remain in the data. The distine-
tion between what is taken to be true or false is
statistically determined at the ¢ significance level by
evaluating W, a function of ALz, which is distributed
approximately like chi-square (¥2). By comparing W,
with a critical value w, obtained from a table of chi-
square values, the hypothesis is rejected if Wy > w,.
On the other hand the hypothesis is not rejected, i.e.,
it is acceptcd at the & significance level, if Wn<w,.
In this case dg, a value of ap accurate within the pre-
cision of measurement, has been determined. Having
determined o, its standard deviation may then be
calculated. The equations supporting this procedure
are now derived.

B. Estimates under the assumptions
The sample density function of the vy, is
I (1/)(27)0:) exp —[(1/207) (y;— O —€:)?]
and 1ts logal ithm is:
~ N In }/(27)
)a (/a7 )

L(ao, agi, ef) =

—Xn;ln g;—(1/
i

(/‘/)11_07-_6') . (1)

The maximum likelihood estimates of the parameters,
ag; O1, --., Om; €1, ..., €m are functions of the vy,
and are denoted by do; G1, ..., Om; €1, ..., ém.
These estimates maximize the sample density func-
tion or, equivalently, its logarithm. Since a side
condition is involved, i.e., Ye;=0, the maximum

2
likelihood estimates must satisfy the (2m+2) equa-
tions:

oL+ ZM.Zei), dao =0, oL+ ZM.:.‘(’i)/('/‘O'i =0,

1
3(L+ Aot 27ei/’f)ei B 0, Ee,; =0.
i i
Note: The Lagrange multiplier Zar is used only in
connection with the relation Ye;=0 to facilitate

3

differentiating the above equations. The relation

aosin 0;=k; is used to eliminate the #; from the

problem of determining the maximum likelihood

estimates.

Carrying out the indicated derivatives and setting
the partial derivatives equal to zero to obtain equa-
tions for maximum likelihood estimates yields:

AL+ 2m Xei)| Gao

= —(1fa0) X (tan 0,/a?)

UL+ 2ar X e/ Oei 1
= (lje})

L+ 7m Xei)/ Gy

i

X (pi—0i—e)=0

S (i, —0i—e)+ 2ar=0

—(nilai)+ (1] 0}) X (pia—Oi—es)>=0
(-3
_Ye;:O .
T
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Using the definitions for y; and s,
may be rewritten:

these equations

—(1/ao) X (ni tan 0/ i) (yi—Bi—e) =0 (2)
(ni/cg)(wi—oi—&) + Axr=0 (3)
— (i 00) + (na D [+ (i~ 0i~ea)?] =0 (4)

‘;‘61:0 . (5)

Combining equations (2) and (3) gives

lw/ao

tan 0;=0
which implies A»r=0 since 1jap+0 and tan §+0.
Equations (2), (3), and (4) then reduce to
o=+t
ei=1,ui——0i .

The maximum likelihood estimates, do, 61, €, and 0;
then satisfy the equations:

do sin B; =k (6)
0i=s; (7)
bi=yi— Ai (8)
36=0. (9)

Explicit values for do and é; can be obtained by
successive approximations using equations (6) to (9)
as indicated in Section 3, B of this paper. By sub-
stituting in equation (1), the maximum of the loga-
rithm of the sample density function under the
assumptions then is

L(do, Gi, &)= —N In J27) — X n; In s; —

i

N/i2. (10)

Since IL(do, 01, €;) is the number desired and it
does not depend on the values of do and é;, it will
be unnecessary in many cases to compute these two
estimates.

C. Estimates under the assumptions and hypothesis

The sample density function of the y;, under the
hypothesis is

I (1)) (27)a:) exp —[(17267) (y;,— 04)?)

and its logarithm 18

L(a07 Gi)
=-Nln)(2x)-

Snilnoi—

i

(1/2) Xn;1ln 03—
i

(1/2) X (1/a}) "(wfx—oi)z
(1/2) 2
X [Si +(1P1'_‘01)2] .

=—NIn}|@2n)— (n,/a,)

(1)
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Differentiating with respect to ¢; only and setting
the partial derivative equal to zero yields:

oL(ao, 61)/E0i= —ni/ i+ (ni] o3) [s7 + (i — 0:)2] =0

which reduces to
0-2:32, + (w_ 01.)2.

The maximum likelihood estimates @o, 42, and 01 then
satisfy the equations:

dosin 0;=k;

(12)
Gi=s2+ (pi—0s)2. (13)
By substituting in equation (11):
L{ao, &:) X
=—Nln}'2n)—(1/2) XnIn (s34 (i — 0:)2] — N/2 .
' (14)

Note: Another equation that the estimates must
satisfy may be obtained from 0L/dao=0; however,
this equation is not so amenable to numerical
calculation.

The value of G can now be obtained by finding that
value of @ which maximizes L(ao, &) or, equivalently,
which minimizes:

W(ao)=—21n ALr
—2[L(ao, &:) — L(do, 61, €:)]

=YnIn [s]4+ (pi—0:)2]— Zn;In s?
. ,

=Xn lnl1+(w’ — 0%

i 3,

(15)
subject to: ag sin 0;=k;.

By plottmg W(ao) versus aqo, Wy, the minimum of
w (ao) and do can be found by mspectlon (see Figs.

2 and 4). Once 4y is found, 0, and &7 can be calculated
from equations (12) and (13).

D. Determination of s,

Under the hypotheslq an estimate of the variance
of dy is given by

1/8;0= E{[E)L(ao, O’i)/" aao]z}

= E{[— (1/a0) X (ni tan 0/ 67) (i — 0:)]2}

= (1/a3)  (n} tan? 0,/0%) By — 0)2
= (1/ag) .2 (nf tan? 0i/a}). (a}/ns)

l/a0 (n: tan? 64/07)
and

sty= G312 (ni,/éf) tan2 0; .
1
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LATTICE PARAMETERS BY FILM POWDER METHODS. I

APPENDIX II
Example of LRM calculation using Bond’s data corrected for refraction

1. Determination of d,, (data for Fig. 3):

(hkl) (111) (333)

k; 1-3341209 4-0023621
1st estimate

i 14-2208250 47-4750750

0; 14-2209055 47-4750577

e —0-0000805 +0-0000173
2nd estimate

(" 14-2208250 47-4750750

0; 14-2209069 47-4750635

e; —0-0000819 +0-0000115
3rd estimate

Y 14:2208250 47-4750750

0; 14:2209089 47-4750721

e; —0-0000839 +0-0000029

2. Determination of &, (partial data for Fig. 4):
a, sin 6

5-43073575 0-2456611703
5-43073600 0-2456611590
5-43073625 0-2456611476

543073575 0-7369834004
5-43073600 0-7369833665
5-43073625 0-7369833326

543073575 0-9826445707
5-43073600 0-9826445255
5-43073625 0-9826444802

(111) reflection
wi = 14:2208250
82 = 10-1875x 108

(333) reflection

Wi 47-4750750
s = 9-1875x 10-8
(444) reflection

wi = 793098250
82 = 87-1875 x 108

ay Ze;
1
543073575 —0-0000729
5-43073600 —0-0000554
5-43073625 —0-0000379

(444) Ze; Estimate of a,
i
53364830
5-43073750 A
79-3098250

79-3097121

+0-0001129 + 0-0000497

5-43073700
79-3098250
79-3097400

+0-0000850 +0-0000146
5-43073625
79-3098250
79-3097819
+0-0000431 —0-0000379
0 e;=1p;—0; ei?fsi® logyg(1+ (e:2/9:%))
14-2209102 —0:0000852 00713 0-029911
14-2209095 —0-0000845 0-0702 0-029465
14-2209089 —0-0000839 0:0690 0-028978
47-4750779 —0-0000029 0-0001 0-000043
47-4750750 0-0000000 0-0000 0-000000
47-4750721 + 0-0000029 0-0001 0-000043
79-3098099 +0-0000151  0-0003 0-000130
79-3097959 +0-0000291 0-0010 0-000434
79-3097819 +0-0000431 0-0022 0:000954
W(ay) =

Z'logyo (14 (e2/s:%)) Zn; In (14 (e:%/s;2))
T T

0-030084 0-277
0-029899 0-275
0-029975 0-276

W, is obtained by plotting W(a,) versus a,. Wn=0-2748 and &,=5-43073604 A if LRT is satisfied.
we is equal to 5-991 at 0-05 significance level and 2 degrees of freedom. Hence W, is less than w, and LRT' is satisfied

3. Variance, standard deviation sqy, and 95°, confidence interval for a,:
0 7o 0

(hKkl) (ji (degrees)
(111) 14-2200094
(333) 47-4750745
(444) 79-3098245
sa® = 62/ Z(mi/3:?) tan® G;
1
Sqq = 6:9x 1078
95%, confidence interval for a,
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Precise and Accurate Lattice Parameters by Film Powder Methods.*
II. An Exact Eccentricity Correction for Cylindrical Film Camerast

By K. E. Beu anp D. L. Scorr

Physical Measurements Department, Development Laboratory, Goodyear Atomic Corporation,
Portsmouth, Ohio, U.S. A.

(Received 24 October 1961)

An exact analytical method is presented which permits correcting cylindrical diffraction film
measurements for sample eccentricity. This method is based on measuring the camera radius in
three directions and using these measurements to calculate the eccentricity vector (P, o), the true
camcra radius 2, and the eccentricity corrcetions A or 40. Radius measurements can be made and
P can be calculated to about # 0-001 mm. using standard high quality dial indicators, micrometers,
and gage blocks. Ifor eccentricities normally tolerated in precision cameras (about 0-01 mm. in
cameras 50 to 150 mm. in diameter), the exact corrections may differ significantly from those
obtained using the approximate method of Bradley & Jay, depending on the orientation of the
eccentricity vector. Exact eccentricity curves are given for a camera especially built for the accurato

determination of lattice paramcters.

1. Introduction

Bradley & Jay (1932) developed an approximate
method for making eccentricity corrections on films
from cylindrical powder cameras by assuming that:
(1) the component of eccentricity perpendicular to the
primary X-ray beam is negligible, and (2) the primary
beam consists only of parallel rays. With improve-
ments in powder camera construction and measuring
techniques (Straumanis & Ievins, 1940, 1940a) so that
diffraction angles could be measured on film with
higher precision (about +0-001 °¢)i it seems worth-
while to re-evaluate existing correction procedures.
It will be shown that the assumptions of Bradley &
Jay restrict the accuracy of their correction procedure

* This work was performed under Contract AT-(33-2)-1
with the U.S. Atomic Energy Commission.

1 Paper I, Beu, Musil & Whitney (1962).

1 @ is defined according to the Bragg equation in the form:
nA=2d cos ¢.

when using the +0-001° criterion. Averbukh &
Tolkachev (1957) eliminate the perpendicular compo-
nent assumption but still base their derivation on the
parallel beam assumption. Straumanis (1940b) by-
passes both assumptions experimentally, but his
method cannot be used to calculate eccentricity cor-
rections as a function of diffraction angle. Thus, an
exact eccentricity correction procedure as a function
of diffraction angle seems desirable.

It is a purpose of this paper to present a rigorous
derivation of the eccentricity correction which in-
cludes both perpendicular and parallel components of
eccentricity and which is based on the usual ex-
perimental condition of a collimated but divergent
primary X-ray beam. The results are presented as
correction curves of Ag versus ¢ or A6 versus 0
even though diffraction measurements are usually
made in terms of 26 or 4¢. A0 or A¢ corrections can
be made directly on calculated 6 or ¢ values after



